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Abstract- This paper presents a genetic algorithm {GA) approach employing floating point representation for economic
dispatch of electric power systems. The objective of economic dispatch is to adjust all running generators o meet the
load demand, such that the cost of generation is minimized. Floating point representation of genetic algorithm may
experiment with real-coded genes together with several operators. Like that of employing binary representation, GA
employing floating point representation has three primary operators : selection, crossover, and mutation. All of them
move genetic algorithm closer to the optimal solution. To demonstrate the applicability an effectiveness of the proposed
method, an application example comprising three generators in a simple six-bus power system is illustrated. Network
power losses and some nonlinear constraints are considered in the system model. First results of the research show that

the proposed method is effective in reaching an optimal solution which is superior to that of the Lambda iteration

method in power loss and total generation cost.
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1 INTRODUCTION

The operation of power systems is characterized by
having to maintain a high degree of economy and
reliability. Among the options that are available to the
engingers in choosing how to operate a power system,
Economic dispatch (ED) is the most significant choice.
Classical economic dispatch techniques  included
Lagrangian function method, dynamic programming
method, and lambda iteration method. Among these
methods, the lambda iteration method is used frequently
by power utilities due to its ease of implementation

(Sheble and Brittig [1995]).

This paper gives a Genetic algorithm solution to ED

problem. The power of GA based on the mechanics of

nature and natural genetics, stems from its ability to
exploit historical information structure from previous
solution guesses in an attempt to improve performance of
future solutions, One of the advantages of GA is that it
uses stochastic operators instead of deterministic rules to
search space, another is that GA searches for many

optimum points in parallel.

The binary representation traditionally used in genetic
algorithm has some drawbacks when applied to
multidimensional, high - precision numerical problems,
For example, for 100 variables with domains in the range
[-300,500] where a precision of six digits after the
decimal point is required, the length of the binary
solution vector is 3000. This , in turn, generates a search

space of about00'?. For such problems genetic
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algorithms perform poorly.

Numerical optimization has been argued by Michalewicz
{1996]. The floating point representation of genetic
algorithm used in this paper, which may experiment with
real - coded genes together with several operators, can
aveid the aforementioned problems and provide a
satistactory application to economic dispatch of electric

power systems.

2. ECONOMIC DISPATCH DESCRIPTIONS

The object of economic dispatch is to supply a given
demand of power at a minimum generation cost subject
to various constraints. This cost is the sum of the
individual plant generation costs. The economic dispatch
problem is a kind of constrained optimization problem,

which can be formulated as follows ( Chenand et al.

[1995])

I=]

Minimize F = fF_j(Pf} ey

Smmnogg—png, Pian S PSPy ()
where

F - total generation cost of the system

P; © power generation of unit §

Fi(P;} * generation cost of unit i at generation p,

n - total number of units

Pl + System transmission losses
P system load demand.
Pymiy -+ minimum generation of unit i
Pifmay - maximum generation of unit i

In (1}, the generation cost function F;¢P;) is uspally

expressed as a quadratic polynomial function

FAP)=a P +h P +c; €))
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where

a:.bivc; - cost coefficients of unit 1,

Since power stations are usually spread owt
geographically, the transmission network losses must be
taken into account to achieve true economic dispatch. In
the B-coefficient method, network losses are expressed

as a guadratic function

non
Plogs = Z ZIPI'BQPJ’ (4)
s j=

Where

B, * loss cosflicients

3. GENETIC ALGORITHM MODELIMG

Genetic algorithm represents a class of general-purpose
stochastic search techniques which simulates natural
inheritance by genetics and Darwinian * survival of the
fittest * principle. They combine solution evaluation with
randomized, structured exchanges of information
between solutions to obtain optimality. Recently, genetic
candidate for many

algorithm has become a

optimizations due to its flexibility and efficiency.

Previous efforts at GA have applied with binary
representation, binary chromosome, and binary operators.
But calculating the objective function for the problem
uses the decoded chromosome set. According tfo
multidimensional and high-precision problems, binary
representation may increase chromosome length, which
becomes heavier calculation time and memory allocation,
especially, infroduces various constraints, In the floating
point representation GA using real-coded genes together
with special genetic operators avoids chromosome
encoding and decoding processes, and can easily
incorporate  various constraints. Overview of GA
operators show thai the floating point representation of

GA has three basic operators © selection, crossover, and



mutation. These operators may be stated as follows

(Michalewicz [19%96])

Selection

Selection is simply an operator whereby an old
chromosome is copied into a “mating pool” according to
its fitness value, More highly fitted chromosomes receive
a higher number of copies in the next generation. By this
selection processing it eventually reaches a near-optimal
solution with a high probability. This study applies a
spinning roulette wheel method, which selects a single
chromosome in a floating way -

(1) Calculate the fitness value fitness(v;} for each
chromosome v; (i=1,...,np )

(2} Find the total fimess of the population
8 = Eﬁtness(v,-)
i=/

(3) Calculate the probability of a selection p, for cach
chromosome v; {(=1,..,np ).

;= fitness(v )/ 8
{4y Calculate a cumulative probability g, for each

chromeosome v, (i=1,...,np )
4,=% P,
=i
{3) Generate a random number », from the rangef0,...,1}.
(6) If »,<g, then select the first chromosome (v;/,
otherwise select the j-th chromosomev;{25; < pp)
suchthat g,_,<r%g, .

where

np 1S popuiation size.
Crossover

Crossover is an extremely important operator for GA, It
is a recombination operator to the individuals in the new
population. In binary implementation, crossover is the
in the

process of choosing a random position

chromosome and swapping the choice bits either left or
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right to generate a new offspring. In floating point
implementation, many crossover operators are used to
enhance the ability of searching optimal space, for
arithmetical simple

whole CrOssover,

example,
arithmetical crossover, and heuristic crossover are
applied. We further detail these operaiors in the

following -
{1} Whole Arithmetical Crossover

This operator is defined as a linsar combination of two

genes it genes x; and x; are to be crossed, the

resulting offsprings are x{=a -x;+{(i—-a)-x, and

x5=a-xp+(l~a)xy, where random
valueg &/0,....1].

{2) Simple Arithmetical Crossover -

This operator is defined as follows @ if

x1=(xp,..xn) and xz=(y;, ..., y,} are crossed after

the k-th position, the resulting offsprings are !
2= (xn i Vi o V)
and

X3 =V Vi Xkt Xn) -

Such an operator may produce offspring outside the
search domain. To avoid this, we use the property of
convex spaces, which states that there exisis 2 consiant

a €f0,..1] such that

XS KX Yy @ F X (I —ah ¥ ratx,{I—-a)>

and

X3=< Ve Yy Rt @ Yy (10 xpa+y, (1-a)>

are feasible.

(3} Heuristic Crossover -

This operator generates a single offspring x; from two

parents x; and x; according to the following rule :



xs;=r (x;—x7)+ x>, where » i3 a random number

between § and 1, and the parent x, is not worse than

x7.he.,  fimess(x;) 2 fitness(x;) for wmaximization

problems and fitness(x;) < fitness(x; ) for minimization

problems,
Mutation

Although selection and crossover effectively search and
recombing existing chromosomes. They do not create any
new genetic material in the search space. Mutation is
capable of overcoming this shortcoming, which randomiy
changes the values at one or more chromosomes in order
to search for unexplored space. In floating point
implementation, there are three operators to be used, they
are uniform mutation, boundary mutation, and non-
uniform mutation. We further detail these operators in the

following :
{1} Uniform Mutation :

This operator requires a single parent x and produces a

single offspring y°. The operator selects a random

VECtor

component kel ....n) of the

x =(xi,.-,x4,..x,) and produces x"':(x;,...,xi,__,,xn).
The operator plays an important role in the early phases
of the evolution process as the solutions are allowed to

more freely within the search space.
{2} Bouwndary Mutation :

This operator requires also a single parent x and

produces a single offspring x°. The operator is a

variation of uniform mutation with x° being either
maximam or minimum, sach with equal probability. The
operator is constructed for optimization problems where
the optimal solution les either on or near the boundary of

the feasible search space.
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{(3) Non - uniform Mutation :

This is the operator responsible for the fine tuning
capabilities of the system. It is defined as follows. For a
parent x={x;,...,xp,....x.4, if the element x; was
resuft s

selected for  this  mutation, the

x° =% x0,00%,) , Where
xi=xp+alt,max—xyj, if a generated random binary
digit is 0. Otherwise x{=x,+aft.x,—min, if a

generated random binary digit is 1.

The function a(7, yjreturns a value in the range [0,...y]
such that the probebility of ofr,y) being close to 0

increases( ¢ is the evaluation number). This property
causes this operator to search the space uniformly

initially (when ¢ is small) and very locally at later stages.

4. MAIN COMPUTATIONAL PROCEDURES

First, we input all data required for the computation,

which include generation cost function, doman

constraini, noo-tinear network losses  constraint,
operators probabilities, and an evaluation counter for
stopping criteria. Then initialize search population and
reference  population  sizes. Im each evaluation,
chromosomes with best fitness values are copied from
search population inte reference population. In selection
process, spinning roulette wheel method is used to
generate  offsprings. Mutation and crossover are
employed respectively to search optimal solution space.
All the offsprings produced in each evaluation must
satisty the prescribed constraints. The flow chart of
Figure 1 states the main computational procedures the

proposed method.



5. EXAMPLE AND RESULTS

A simple system with three thermal units ( Wood and
Wollenberg [1996] ) is used to demonstrate how the

proposed approach works. The unit data are given in

Table 1.

Table 1 Unit data

Pimmin) | Pifmas) a; bi ci
Units | (MW) | (MW) | g am?)| 57 arw {3)

] 30 250 | 0.00525 | 8.663 328.13
2 5 150 | 0.00609 1 10.04 | 13691
3 i5 160 | 0.00592 8.76 59.16

input data of generation cost function, doman
constraints, and nan-tinear network losses
constraing

%

Initialize the search populaticn and reference
population with random real-coded strings
subject to constraints

4 =
¥

Evaluate the fitness function

Apnly selection, crossover, and mutation to
generate offsprings

Replace the chromaosomes in the reference
population with better ones obtained from the
search populaton

Evaluation counter >5000

Yes

[ e

Figure 1 Main computational procedures for the proposed

method
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The loss coefficients are -

0.000136 0.0000175 ©.000134
By ={0.0000175 (.000154  0.000283
0.00018¢  0.000283  0.00161
Load demand = 360 MW,
Parameters used for GA
search population size = 20
reference population size = 3
whole arithmetical crossover probability = 0.0667
simple arithmetical crossover probability =
0.06667
heuristic crossover probability = 0.5556
uniform mutation probability = 0.06667
boundary mutation probability = 0.06667
non-uniform mutation probability = 0.06667

maximum evaluation number = 5000

Computational results from the proposed method are
shown in Table 2. For comparison, resuits from the
typical economic dispatch method of lambda iteration are
also listed in Table 2. it can be seen that the unit power
generations from the two methods are very close, and the
total generation cost of the proposed method is slightly

smaller than that of the lambda iteration method.

Figure 2 shows the variation of total generation cost with
respect to evaluation number. It is observable that the
proposed  method  has  excellent  convergent

characteristics,

Table 2 Computational results from the proposed and

lambda iteration methods

P P; P Ploss Taotal
Methods | (MW (MW ) (MW) (MW generation
cost {$)

the proposed(207.581] 87.338 | 15.000 | 9.969 3619.756

Lambda [207.7 |87.3 15.0 10.0  |3619.55

iteration
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6. CONCLUSIONS

A new optimal economic dispatch method that uses
Genetic  Algorithm  employing  floating  point
representation for electric power systems is presented. In
comparison with the lambda iteration method, the
proposed method has better solution Fioating point

representation of GA uses many heuristic operators,

parallel search of many optimum points , and
probabilistic rules. Which enables the proposed approach
to become a robust and global optimization algorithm.
Moreover, this approach can also take network lpsses

into account to make the dispatch more practical.
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